对角阵

时间:2023-11-28 05:43:30编辑:小识

对角阵什么意思

对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵,常写为diag(a1,a2,...,an)。对角矩阵可以认为是矩阵中最简单的一种,值得一提的是:对角线上的元素可以为0或其他值,对角线上元素相等的对角矩阵称为数量矩阵;对角线上元素全为1的对角矩阵称为单位矩阵。对角矩阵的运算包括和、差运算、数乘运算、同阶对角阵的乘积运算,且结果仍为对角阵。

扩展资料

1、当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘。

2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。

3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。

基本性质

乘法结合律:(AB)C=A(BC)

乘法左分配律:(A+B)C=AC+BC

乘法右分配律:C(A+B)=CA+CB

对数乘的结合性k(AB)=(kA)B=A(kB)

转置(AB)T=BTAT.

矩阵乘法一般不满足交换律。

上一篇:普通公寓

下一篇:没有了